Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Effectively balancing traffic in datacenter networks is a crucial operational goal. Most existing load balancing approaches are handcrafted to the structure of the network and/or network workloads. Thus, new load balancing strategies are required if the underlying network conditions change, e.g., due to hard or grey failures, network topology evolution, or workload shifts. While we can theoretically derive the optimal load balancing strategy by solving an optimization problem given certain traffic and topology conditions, these problems take too much time to solve and makes the derived solution stale to deploy. In this paper, we describe a load balancing scheme Learned Load Balancing (LLB), which is a general approach to finding an optimal load balancing strategy for a given network topology and workload, and is fast enough in practice to deploy the inferred strategies. LLB uses deep supervised learning techniques to learn how to handle different traffic patterns and topology changes, and adapts to any failures in the underlying network. LLB leverages emerging trends in network telemetry, programmable switching, and “smart” NICs. Our experiments show that LLB performs well under failures and can be expanded to more complex, multi-layered network topologies. We also prototype neural network inference on smartNICs to demonstrate the workability of LLB.more » « less
-
We consider the problem of establishing that a program-synthesis problem is unrealizable (i.e., has no solution in a given search space of programs). Prior work on unrealizability has developed some automatic techniques to establish that a problem is unrealizable; however, these techniques are all black-box , meaning that they conceal the reasoning behind why a synthesis problem is unrealizable. In this paper, we present a Hoare-style reasoning system, called unrealizability logic for establishing that a program-synthesis problem is unrealizable. To the best of our knowledge, unrealizability logic is the first proof system for overapproximating the execution of an infinite set of imperative programs. The logic provides a general, logical system for building checkable proofs about unrealizability. Similar to how Hoare logic distills the fundamental concepts behind algorithms and tools to prove the correctness of programs, unrealizability logic distills into a single logical system the fundamental concepts that were hidden within prior tools capable of establishing that a program-synthesis problem is unrealizable.more » « less
-
Machine learning models are vulnerable to data-poisoning attacks, in which an attacker maliciously modifies the training set to change the prediction of a learned model. In a trigger-less attack, the attacker can modify the training set but not the test inputs, while in a backdoor attack the attacker can also modify test inputs. Existing model-agnostic defense approaches either cannot handle backdoor attacks or do not provide effective certificates (i.e., a proof of a defense). We present BagFlip, a model-agnostic certified approach that can effectively defend against both trigger-less and backdoor attacks. We evaluate BagFlip on image classification and malware detection datasets. BagFlip is equal to or more effective than the state-of-the-art approaches for trigger-less attacks and more effective than the state-of-the-art approaches for backdoor attacks.more » « less
-
Every program should be accompanied by a specification that describes important aspects of the code's behavior, but writing good specifications is often harder than writing the code itself. This paper addresses the problem of synthesizing specifications automatically, guided by user-supplied inputs of two kinds: i) a query posed about a set of function definitions, and ii) a domain-specific language L in which the extracted property is to be expressed (we call properties in the language L-properties). Each of the property is a best L-property for the query: there is no other L-property that is strictly more precise. Furthermore, the set of synthesized L-properties is exhaustive: no more L-properties can be added to it to make the conjunction more precise. We implemented our method in a tool, Spyro. The ability to modify both the query and L provides a Spyro user with ways to customize the kind of specification to be synthesized. We use this ability to show that Spyro can be used in a variety of applications, such as mining program specifications, performing abstract-domain operations, and synthesizing algebraic properties of program modules.more » « less
-
Modern programmable network switches can implement cus- tom applications using efficient packet processing hardware, and the programming language P4 provides high-level con- structs to program such switches. The increase in speed and programmability has inspired research in dataplane program- ming, where many complex functionalities, e.g., key-value stores and load balancers, can be implemented entirely in network switches. However, dataplane programs may suffer from novel security errors that are not traditionally found in network switches. To address this issue, we present a new information-flow control type system for P4. We formalize our type system in a recently-proposed core version of P4, and we prove a sound- ness theorem: well-typed programs satisfy non-interference. We also implement our type system in a tool, P4BID, which extends the type checker in the p4c compiler, the reference compiler for the latest version of P4. We present several case studies showing that natural security, integrity, and isolation properties in networks can be captured by non-interference, and our type system can detect violations of these properties while certifying correct programs.more » « less
An official website of the United States government

Full Text Available